Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface.
نویسندگان
چکیده
OBJECTIVE This study investigates the impact of a continuously presented visual feedback in the form of a grasping hand on the modulation of sensorimotor EEG rhythms during online control of a brain-computer interface (BCI). METHODS Two groups of participants were trained to use left or right hand motor imagery to control a specific output signal on a computer monitor: the experimental group controlled a moving hand performing an object-related grasp ('realistic feedback'), whereas the control group controlled a moving bar ('abstract feedback'). Continuous feedback was realized by using the outcome of a real-time classifier which was based on EEG signals recorded from left and right central sites. RESULTS The classification results show no difference between the two feedback groups. For both groups, ERD/ERS analysis revealed a significant larger ERD during feedback presentation compared to an initial motor imagery screening session without feedback. Increased ERD during online BCI control was particularly found for the lower alpha (8-10 Hz) and for the beta bands (16-20, 20-24 Hz). CONCLUSIONS The present study demonstrates that visual BCI feedback clearly modulates sensorimotor EEG rhythms. When the feedback provides equivalent information on both the continuous and final outcomes of mental actions, the presentation form (abstract versus realistic) does not influence the performance in a BCI, at least in initial training sessions. SIGNIFICANCE The present results are of practical interest for classifier development and BCI use in the field of motor restoration.
منابع مشابه
Robot control system using SMR signals detection
One of the important issues in designing a brain-computer interface system is to select the type of mental activity to be imagined. In some of these systems, mental activity varies with user intent and action that must be controlled by the brain-computer system, and in a number of other signals, the received signals contain the same activity-related mental activity that should be performed by t...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملEEG Event-Related Desynchronization of patients with stroke during motor imagery of hand movement
Brain Computer Interfaces (BCI) can be used for therapeutic purposes to improve voluntary motor control that has been affected post stroke. For this purpose, desynchronization of sensorimotor rhythms of the electroencephalographic signal (EEG) can be used. But it is necessary to study what happens in the affected motor cortex of this people. In this article, we analyse EEG recordings of hemiple...
متن کاملPractical Designs of Brain–Computer Interfaces Based on the Modulation of EEG Rhythms
A brain–computer interface (BCI) is a communication channel which does not depend on the brain’s normal output pathways of peripheral nerves and muscles [1–3]. It supplies paralyzed patients with a new approach to communicate with the environment. Among various brain monitoring methods employed in current BCI research, electroencephalogram (EEG) is the main interest due to its advantages of low...
متن کاملComparison of Different Linear Filter Design Methods for Handling Ocular Artifacts in Brain Computer Interface System
Brain-computer interfaces (BCI) record brain signals, analyze and translate them into control commands which are relayed to output devices that carry out desired actions. These systems do not use normal neuromuscular output pathways. Actually, the principal goal of BCI systems is to provide better life style for physically-challenged people which are suffered from cerebral palsy, amyotrophic l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
دوره 120 2 شماره
صفحات -
تاریخ انتشار 2009